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Transitions in Creep Behaviour 

R. C. G I F K I N S *  
Physical Metallurgy D/vision, C SIR O, University of Melbourne, Parkville, 
Victoria, Austrafia 

Attempts to identify the mechanisms operating during creep are often made by examining 
plots which yield apparent activation energies, or the stress or grain size-dependences of 
creep-rate. The forms of such plots are here examined and the ambiguities which arise 
near transitions from one regime to another are noted. The ranges of temperature, stress 
and grain size commonly used are inadequate and serious errors in interpreting the 
results of creep tests will continue to be made until a better understanding of the 
interaction of the basic processes is developed, so as to enable the positions of 
transitions to be predicted. 

1. Introduction 
The way in which minimum creep-rate depends 
upon temperature, stress or grain size is often 
used as a means of attempting identification of 
the mechanisms of creep operating in particular 
circumstances. The resultant relationships are 
also useful as a systematic way of comparing 
tests and materials. This kind of behaviour may 
be formalised through the equation 

is = [(Sa~)/d m ] exp (--  Qs/RT) (1) 

where ~s is the minimum creep-rate,~r is the stress, 
S is a structure factor, d the grain diameter, 
Qs the activation energy for creep and n and m 
constants. R and T have their usual meanings. 

Mechanisms of creep are identified by 
comparison of the values of Qs, n and m which 
are found during creep with those appropriate to 
the  various basic processes. Sometimes a series 
of tests will yield an answer which is unique and 
unambiguous, but more often the analysis is 
complicated by the presence of two or more 
mechanisms operating simultaneously. This leads 
to plots which show transitions between regimes 
of behaviour, and often to values of Qs, n or m 
which do not match any of the probable mechan- 
isms. 

Aspects of this problem have been considered 
in the literature, particularly in connection with 
activation energies. For example, Crussard and 
Tamhankar [1] discussed the general form of the 
Arrhenius plots for various combinations of 

processes and this scheme has been used in the 
interpretation of results for several metals [2-6]. 
In some of these papers [3-5] the interaction of 
changes of values of S, m and n with those for 
Qs is discussed, using an additional development 
of the analysis due to Munson and Huggins [7] 
(not available in the general literature). 

There is a considerable literature on the stress- 
sensitivity of creep, although much of it is 
devoted to attempts to produce analytical 
expressions which characterise the complete 
range of stress, rather than to identification of the 
mechanisms of the various regimes [8 ]. A similar 
remark applies to grain size-dependence [8 ]. 

It is the purpose of this paper to explore the 
full range of types of transition behaviour and in 
so doing draw attention to the possibilities these 
give for extracting values of Qs, m or n which 
appear to have high statistical significance but 
which may be mechanistically false or misleading. 

2. Temperature-Dependence 
Following Crussard and Tamhankar [1 ] it has 
become usual to describe creep processes in terms 
of thermally activated mechanisms occurring "in 
series" or "in parallel". This has semantic 
dangers, as revealed in the discussion to [6], 
where the confusion applied to processes in 
parallel. Parallel processes were considered 
synonymous with simultaneous, and series 
processes with those acting consecutively. Wood- 
ford [9] then pointed out that in the terminology 
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of mechanical analogies both parallel and series 
are considered subdivisions of "simultaneous". 
It might therefore be better to speak of simul- 
taneous processes in parallel as "concurrent" 
and series processes which are not simultaneous 
as "sequential", although we will here combine 
these terms with the older ones to assist in clarity. 

The inset diagram in fig. 1 reproduces the 
scheme set out by Crussard and Tamhankar.  
According to this the observed rates will follow 
the full lines except near the crossover point 
where the appropriate broken line applies. 

We shall now consider various possibilities 
for combining two processes, type A and type B, 
which proceed with rates given by the equations 
~A = a exp -- QA/RT and ~B = b exp -- QB/RT 
respectively. 

To aid in constructing the diagrams, explicit 
values for QB and QA have been assumed, 
namely 26 and 13 kcal mol -~ respectively; these 
values are approximately those for self-diffusion 
in the crystal and in the grain-boundaries 
respectively of lead. 

2.1. Case 1 : Paral lel-Concurrent (PC) 
This is taken to mean the simultaneous and 
independent operation of both processes; it 
implies that there are equal numbers of acti- 
vatable volumes ("units") of both types, all 
contributing equal units of strain and that it is 
only the local temperature fluctuations which 
determine when a unit fires, not its proximity 
to other units, of  either type. It is perhaps also 
worth emphasising, as an aside, that in creep and 
deformation the situation is that "firing" a unit 
does not generally remove it from the population 
of firable units; having fired, it is immediately 
in the position of being able to be fired again. 
This contrasts with a typical chemical reaction 
where the units (reactants) are gradually 
removed and the proportion of reaction product 
concomitantly built up and where measurements 
of this build-up may be used to identify the types 
of processes participating. 

In this parallel-concurrent type (PC), the 
overall rate of creep ds = dA + 4B and at the 
crossover point Ex at temperature T~ we have 
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Figure 1 (Inset) Schematic, showing "parallel" and "series" processes in creep characterised by Arrhenius plots 
(after Crussard and Tamhankar [1 ]). The main lines show a detailed analysis of the combinations implied in the inset 
for a particular pair of processes having activation energies of 26 and 13 kcal mo1-1 and giving equality of rates at a 
temperature T E (for details, see text). 

157 



R. C. G I F K I N S  

is ~ 2iB = 2~A; that is, in fig. 1, the observed 
rate will plot as the point E~ which is log 2 
above Ex. Other points will fall along the dotted 
line and the complete curve will be AEpB'. The 
curved transition range becomes more extensive 
on the temperature scale and more symmetrical 
about Ex as QA approaches Q~ in value, but 
less distinguishable from the straight lines as 
QA and QB both become larger (i.e. as the lines 
become more steep). 

It will be seen that, for the particular pair of 
values of activation energy chosen (Q~, = 13, 
Q~ = 26 kcal tool -I) and for the value of T~ = 
400 ~ K, the transition range extends from 330 
to 465 ~ K. If  it is taken that a creep-rate can 
only be determined within a limit of :k25 ~ (as 
indicated by the size of the points marked) this 
transition range is reduced to 58 ~ K, marked by 
arrows in fig. 1. 

Let it be supposed that the experimental 
points have been determined without experi- 
mental error and therefore are, as indicated by 
the points a-k, all lying along the theoretical 
curve AEpB'. It is immediately clear that the 
determination of the true values of QA and QB 
can only be made from among this group of 
points using c, d, e for QA and h, j, k for QB; 
fitting lines to points over such comparatively 
narrow temperature ranges is inherently in- 
accurate. What is usually done is to include all 
points (except perhaps Ep) in the least squares 
determinations i.e. using a-e for QA and f-k for 
QB. When this is done in fig. 1, the values 
become Qa = 14.4 and QB--23  kcal mo1-1 
giving errors of approximately 10 ~ even i f  there 
is no experimental scatter. Since it is generally 
more difficult to obtain reliable creep-rates at 
very high or very low rates, it is the more accurate 
.(and, often, more numerous) points in the middle 
range that are biased by the effect just discussed. 
Thus, in the total analysis, it could be that the 
curvature at Ep might reinforce or cancel the 
overall experimental errors. 

In general, this effect may not be too serious a 
source of error provided that the range of 
temperature is extensive enough to bring at least 
points equivalent to j, k and d, e into the plot. 
On the other hand, should only points between 
g and c be determined, a single and misleading 
value of Q "~ 20 kcal mo1-1 would appear to be 
indicated with a high level of statistical confidence 
(i.e. th~ ~ scatter :of Points would appear to be 
small). 

There are many examples in the literature of 
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plots of the type shown in fig. 1 and sometimes 
it has been recognised that Ex falls below E~. 
For example, Flinn and Duran [4] in their fig. 1 
show Arrhenius plots for a series of tests on 
cadmium, and identify processes in parallel. 
However, they plot the pairs of lines using all 
the experimental points, so giving a spurious 
confidence in the least squares fit, bringing Ex 
too close to Er  and displacing T~ by nearly 20~ C. 
Using a formula derived by Munson and Huggins 
[7] they also calculated the temperature range 
for the transition to be ~ 45 ~ this agrees well 
with that found using the present geometrical 
construction but not, in fact, with the plot they 
actually reproduce. 

2.1.1. Parallel-Concurrent, 
Proportionated (PCP) 

The processes are again simultaneous but some 
special geometrical factor operates to proportion- 
ate them within the specimen; this could be 
obtained if accommodation between units is 
independent of temperature and very rapid 
compared to either process, as could be the case 
for a purely elastic accommodation. The net 
result of this arrangement would be to give 
behaviour equivalent to two independent sub- 
specimens, one entirely of the A units and the 
other of the B units. The overall rate is thus 
obtained by adding appropriate proportions of 
the two basic rates: 

is = (y/100) d~ + {(100 -- y)/100}g~ 

where the percentage of A units is y. 
The curve obtained for is is exactly the same 

as AEpB' but it always passes through Ex, and 
E• is displaced to the left or right of Ex accord- 
ing to the value of y;  when y = 50, Ep coincides 
with Ex. Examples for y = 10 and 90 are shown 
in fig. 1 in the broken curves PNA and LMB'. 

This means that it is not possible to decide 
from inspection of a transition curve of the PC 
type what the geometrical proportions of the 
two participating processes are. Any proportion 
of a process of high activation energy will always 
emerge to dominate at high temperatures; 
similarly, any proportion of a process of low 
activation energy will emerge to dominate at low 
temperatures, (low or high temperatures refer 
to T~ as the norm). An example of the latter could 
well be provided by the participation of grain- 
boundary sliding involving grain-boundary self- 
diffusion and occurring to a minor extent in 
parallel with slip controlled by climb. It is 
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possible that the situation in practice could be 
further complicated by the value of y itself being 
dependent upon temperature. To take an 
extreme case, if y changes from 10 at low 
temperatures to 90 at high temperatures, the 
experimental plot would appear to be three 
straight lines LM, MN, NP (fig. 1) corresponding 
to activation energies QA, approximately (QA + 
QB)/2, and QB respectively, at low, intermediate, 
and high temperatures. The range of the 
intermediate temperature regime would, in this 
example, be considerable, viz. 130 ~ K. 

2.2. Case 2: Series-Sequential, Dependent 
(SD) 

Here process A cannot proceed until process B 
has taken place in an appropriate group of  units. 
Crussard and Tamhankar [1] sketched the 
experimental curve A'EsB (fig. 1) to be symmetri- 
cal with AEI~B'. This curve is not the one that 
corresponds to the simplest interpretation of the 
notion of series processes. It implies a special 
interaction whereby B units remain incapable 
of reactivation whilst their associated A units 
are firing, so that when iA = iB at T~ we have 
is = iA/2, and is drops below Ex by a distance 
of log 2, the curve being symmetrical to that for 
the PC case. This could be distinguished by 
calling it series-alternating, dependent (SAD). 

The simpler case of SD is when B becomes 
immediately capable of firing again as soon as A 
begins; the overall rate is then always that of the 
slower of the two and points fall along BExA'. 
A situation in which this pattern might be 
expected is as follows. Suppose process B to be 
sliding along a grain-boundary AB in fig. 2 and 
process A to be slip (to form a triple-point fold) 
across BC in the neighbouring grain. It is clear 
that the slip movement always follows sliding 
but that the overall rate is determined either by 
the rate at which sliding "pushes" the slip 

A < B 

Sliding 

Figure 2 Sliding along AB,  accommodated by slip along 
BC - a case of a ser ies-dependent processes. 

process or by the rate at which slip accommo- 
dates the sliding, whichever is the slower. 

3. Stress-Dependence 
The discussion here will be confined to a 
consideration of power laws of stress-dependence, 
as given in equation 1. The question of the correct 
form for the stress-dependence has been debated 
elsewhere [10]. However, this discussion could 
readily be adapted to an exponential law and 
similar conclusions reached. 

There has been an increasing body of evidence 
to show that at least two stress regimes 
commonly occur, with n = 1 at low stress and 
n = 5, 6 or 7 at higher stresses. Many workers 
allege their results support n = 5 and that this 
confirms Weertman's [11 ] creep theory, although 
this in itself is not convincing for there are other 
equally acceptable theories which also predict 
n =  5 (e.g. [12, 13, 14]). Perhaps the most extensive 
compilation for any material is that by Harris 
and Jones [15] for Magnox alloy; they used 
temperature-compensated plots to reveal three 
regimes with n = 1, 3.5 and 7. In fact, the 
general situation is less simple than this; a survey 
of all creep papers published in four international 
journals [16-19] from 1961 to 1968 shows that 
all values of n from 1 to 11 have been found; of 
these 25 were of 4 or below, 19 of 5 and 9 above 
5. Non-integral values of n are not uncommon, 
particularly with ceramic materials. 

3.1. Parallel-Concurrent 
The point that will be made in this paper is that 
a variety of values of n may well be a natural 
consequence of the presence of parallel-con- 
current mechanisms, such as have been discussed 
by Gifkins and Snowden [10]. 

The effect of combining various regimes is 
illustrated in fig. 3. In fig. 3a the lines CC' and 
DD'  for n = 1 and n = 5 respectively are shown, 
and the points represent the expected experi- 
mental rates for specimens in which both pro- 
cesses operate in such a manner that the rates for 
the two processes are equal at Fx at a stress G~. 
As in the Arrhenius plots, we find the experi- 
mental curve CFpD' passing through F1, a 
distance log 2 above Fx. 

If it is supposed that only the points c-j have 
been determined, then these fall convincingly on 
two lines of slopes to give n = 5 (points f-j) 
and n = 3 (points c-f). Even including point b 
would not alter this deduction significantly, but 
perhaps give a fractional value such as 2.8 for n 
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Figure 3 Para l le l -concurrent  processes involv ing var ious stress regimes which combine to give the points indicated 

and thus  the possib i l i ty  of " f a l se "  stress exponents.  (a) Regimes with n = 1 and n = 5; (b) regimes wi th n = 7 and 

n = 1; (c) regimes with n = 7 and n = 3. 

quite reproducibly. On the other hand, a very 
good fit for a line giving n = 4.5 would be 
found if only the points d-k were determined. 
It should be noted that all the cases just cited 
are for stress ranges involving a factor of 4 or 5 
between extremes, which is reasonably typical 
of  those used in practice. 

The reason for this being typical is probably 
connected with the fact that it is difficult to 
extend creep tests to much faster or slower rates 
than those given by this kind of stress range. 
For  example, if n does equal 5, then a 5-fold 
increase in stress gives 3�89 orders of magnitude 
increase in creep rate. Suppose it requires a strain 
of 10 ~ to measure minimum creep rate and that 
the shortest tests cannot conveniently be run in 
less than an hour. Then the lowest stress in the 
range will require a test which will have to be 
for 3000 h ~_ 120 days. 

In figs. 3b and c combinations of n = 7 with 
n = 1 and n = 3 respectively have been plotted 
in a similar manner to fig. 3a. It is clear that the 
(7-3-1) combination, approximately that found 
for Magnox, is readily simulated by combining 
n = 1 and n = 7 and that a fractional value like 
n = 4.5 (which is quite commonly cited) may 
also arise rather convincingly from n--~ 7 and 
n = 3. A little less confidence in fitting the points 
a-h in fig. 3c gives the spurious value of n = 5.2, 
which is typical of other non-integral values 
found experimentally. 

160 

It is clear, then, that combining processes 
with n = 1 and a value of 5 or higher can yield 
very convincing plots which simulate values like 
n = 3 or 5 at intermediate stresses, particularly 
if the stress range is kept to within a five-fold 
increase. 

3.1.1. The Zener-Holloman Plot 
Many workers have realised some of the dangers 
and difficulties of the normal log-log plot and 
tried to extend their results to a wider range of 
stresses by varying the temperature, increasing it 
to speed up low-stress tests and lowering it to 
slow down the high-stress ones. The results are 
then plotted to yield a single line using the 
Zener-Holloman parameter, Z, to compensate 
for the changes in temperature. Z is isexp 
(Qs/RT), and therefore may only be used for 
tests which keep within a particular temperature 
regime (e.g. Qs--: Q~. or QB here). However, 
there is evidence [10] that the critical stress aF 
(fig. 3) depends on temperature in the manner 
indicated by the series of lines for temperatures 
T1, T~, Ta and T4 as shown in fig. 4. Since the 
tests at higher temperatures are often undertaken 
principally to explore the low-stress range giving 
points such as those shown in fig. 4, they may not 
be plotted on the simple log-log display of section 
A of the diagram which reveals the temperature- 
dependence of aF. Instead they would be trans- 
ferred by the appropriate distance equivalent to 
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Figure 4 Showing how a Zener-Holloman plot of temper- 
ature-compensated creep-rate may give a false value of 
the stress exponent when two stress regimes are present. 

exp (Qs/RT)and plotted, as in section B of fig. 4, 
to produce the line of  slope to give n = 4.5 
(compare the " t rue"  line with n = 5). In practice 
the misleading nature of  this plot would be 
further disguised by inherent experimental 
scatter. I t  should be noted that this effect would 
obtain even if points at higher stresses on the 
high-temperature lines were obtained, although 
some warning of the trouble would be given if 
simple log-log plots were examined. 

3.2. Parallel-Concurrent, Proportionated 
There is another case which could be of import- 
ance during creep, when parallel-concurrent 
mechanisms operate, but their proportions change 
as a function of stress; this could happen if there 
is a critical stress CrF such that a particular 
mechanism only took place at stresses above eF. 
A possibility is that cry. is the critical resolved 
shear stress for the mechanism concerned. Under 
these conditions the proportions of  the two 
mechanisms operating then depend upon the 
actual stresses present on various units of  the 
specimen concerned. To take a specific case, 

let us suppose that grain-boundary sliding 
occurs as a major mechanism and that below 
a~- it is controlled by an accommodating process 
with n - -  1 [10] and above aF by one with n = 5. 

The stresses which concern us in calculating 
the form of the dependence of rate-of-sliding 
upon stress are now the shear stresses on grain- 
boundaries in the specimen [20]. These depend 
on the angle 0 between each grain-boundary and 
the direction of the applied stress e. Since there 
will be grain-boundaries with all values of  0, 
the shear stresses on them will range from 0 to 
0.5 e. As the value of cr is increased from below 
aF, the number of  boundaries experiencing a 
shear stress greater than ov will also increase, in 
a manner which may easily be calculated f rom 
comparisons of  resolved shear stresses and aF. 
I t  is then possible to calculate the average 
contribution of the two mechanisms to the 
overall strain. 

In fig. 5 this has been done for regimes of 
deformation having n =  1 and n = 5  and a 
particular value of aF, the points shown in the 
diagram being those computed. This leads to the 
drawing of lines having slopes n = 1  and n = 
5.5 whereas, in fact, the mechanisms concerned 
are those with n = 1 and 5. The effect of  the 
presence of a proportion of boundaries having a 
resolved shear stress below crF persists over three 
orders of  strain rate; this means that the 
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Figure 5 Combining stress regimes in parallel but pro- 
portionated according to a resolved shear stress law for 
grain-boundary sliding. 
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computed points (i.e. those which would be 
found experimentally) do not come back to the 
line with n = 5 unless an even wider range of 
strain rates is determined. The range of rates 
shown in fig. 5 is as wide as would usually be 
practicable or convenient to examine; it thus 
becomes difficult to establish the true value of n 
in the upper regime, particularly as experimental 
errors of other kinds might pull the value even 
further from the true one. 

In fig. 6 some experimental values of rate-of- 
sliding ~) and of creep i for a lead-thallium 
alloy [20, 21] are examined in the light of the 
foregoing discussion. The points shown are the 
experimental ones. In figs. 6a and c the lines 
shown have been calculated using the method 
described for fig. 5 but using values of n = 1 
and n = 3 and with ~rF chosen to give good fit. 
The resulting lines with slopes n = 1 and n = 3.4 
give excellent fit for both rates of creep and of 
sliding. For comparison, in figs. 6b and d these 
same points are superimposed on curves obtained 
by combining mechanisms having n = 1 and n = 
5 according to the parallel-concurrent case 
discussed in connection with fig. 3a. The fit is 
again very good but there is a falling away from 
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Figure 6 Creep-rates and sliding-rates for a lead-thallium 
alloy (experimental points) compared with two types of 
theoretical carve: (a) and (b) are for creep-rates; (c) and 
(d) for sliding-rates. 
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the curve at the highest stress for both creep and 
sliding and this feature was present for some other 
creep results for lead-thallium alloys. If  this 
departure from good fit is significant the pro- 
portionated case in figs. 6a and c is jthe more 
acceptable analysis. It is clear that it is difficult 
to distinguish between these two cases unless 
more extensive results are available. This would 
not be easy to achieve experimentally, being 
more difficult for measurements of sliding than 
for creep at the higher stresses, because the 
amounts of sliding become small and the 
surfaces of the specimens distorted. 

4. G r a i n  S i z e  

Various mechanisms have been put forward 
which give values of rn in equation 1 of 1, 2 or 3, 
O.e. 1/d, 1/d 2 or 1/d ~) particularly for variations 
of Nabarro-Herring diffusional creep [22]. 
Quite often, especially with ceramics, fractional 
values of m have been found experimentally, 
thus throwing doubt upon mechanisms tentatively 
identified by the values of n or Qs found. 

4.1. Paral lel-Concurrent 
Fig. 7 shows the resultant curve AEpB' for 
parallel-concurrent mechanisms having grain 
size-dependences with m in equation 1 equal to 
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Figure 7 Combining mechanisms having grain size- 
dependence for creep- (or sliding-) rates of 1/d and 1/d2, 
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1 and 2 (i.e. creep-rates depending on 1/d or 
1/d2). As with temperature- or stress-dependence, 
the critical factor in determining whether a false 
value of rn is obtained from experimental results 
is the position of the crossover point Ex. 
Sometimes it may be possible to calculate the 
value of the critical grain size dz (corresponding 
to Ex) from the pre-exponential factors in the 
creep equations e.g. in variants of N-H creep. 
I f  the experimental grain sizes are then at least 
an order of magnitude greater or smaller than 
dz the value of m should not be in error as a 
result of this parallel-concurrent effect. Otherwise 
it is desirable to have a range of grain size equal 
to at least two orders of  magnitude, to ensure 
that false, intermediate, values of m are not 
derived. In practice, such a range of stable grain 
sizes is difficult to achieve. 

It will be seen in fig. 7, that values of rn such 
as 1.7 or 1.8 would be found if the curve EpM 
were determined and values of about 1.2 would 
be found for points from Ee down to about N. 
A similar situation applies to a parallel-con- 
current combination with m = 1 and 3 or 
rn ---- 2 and 3; just as in fig. 7, there is a transition 
range of 1�89 to 2 orders of magnitude for grain 
size. 

Should there be a suitable geometrical 
arrangement within the specimen such that the 
mechanisms are proportionated as previously 
suggested for the temperature-dependence, the 
curve AEpM is shifted to pass through Ex and 
is moved, according to whether the mechanism 
with rn = 1 or m = 2 is in the greater proportion. 
For example, with 90 ~ of the (m -= 1) mechan- 
ism and 10~  of the (m = 2), the dotted line 
SExA results. Once again it turns out that mere 
inspection of the slope of the curve, even if it is 
extensive enough to show its complete form, is 
not sufficient to distinguish between parallel- 
concurrent and parallel-concurrent proportion- 
ated mechanisms. Also, whatever the pro- 
portions, it is always the mechanism with the 
highest value of rn that emerges as the only 
apparent one at small enough grain sizes. 
Conversely the lowest value of rn dominates at 
large enough grain sizes. 

5. Complex Situations 
It is likely that many cases in creep are more 
complex than any of those described so far. For 
example, grain-boundary sliding A may be 
accommodated by slip B (in a series-sequential 
process) and the resultant itself combined with 

slip B within the grains in a parallel-concurrent 
manner. If  the pre-exponential terms are different 
for the two kinds of slip, as is possible because 
of stress concentrations at the grain-boundary or 
the influence of grain or sub-grain size, then the 
situation in fig. 8a could arise. The kink in the 
true plot could easily be confused by scatter, 
and the inference perhaps drawn that only a 
single process D operates over the whole range. 
A further implication of this would be that similar 
complex plots for stress- or grain size-dependence 
should arise; these can readily be constructed 
following the methods used in this paper. Again, 
these could suggest how false values of the 
appropriate indices could arise, or on the other 
hand, show that tripartite plots for stress or 
grain size-dependence are not unlikely. 

On the other hand, if the second slip process 
has a higher activation energy, C, the situation 
might be characterised by fig. 8b, and the 
inference drawn that process D was acting in a 
parallel-concurrent manner with process C. 

If  combinations such as those plotted in figs. 
8a and b are encountered experimentally, it is 
probable that experimental scatter would further 
disguise the true situation. The possibilities of 
such combinations are so numerous that it is 
clearly not possible to disentangle them merely 
by inspection. As should always be the case in 
this kind of analysis,the inferences drawn should 
be guided and illuminated by consideration of 
probable mechanisms. This implies not only that 
the theoretical model for such mechanisms be 
known, but that the values of basic parameters 
in the equations (such as activation energy for 
self-diffusion) also be reliably known; un- 
fortunately, this is seldom the case, and this 
limitation must be recognised. 

6. Summary and Conclusions 
(i) The analyses discussed show very clearly that 
there are dangers in deriving temperature-, 
stress- or grain size-dependences from too 
narrow ranges of the appropriate variable. This 
is not a new finding, but the present discussion 
shows the extent of transition ranges to be 
expected under various conditions. These ranges 
are often about the same as can be encompassed 
readily experimentally, e.g. without involving 
either very short or very long times for tests, 
or very coarse grain sizes. 
(ii) Where more than one mechanism operates, 
characteristic curves result for combinations in 
parallel and concurrent (PC), in parallel-con- 
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Figure 8 Arrheniue plots (a) combining A and B in a series-dependent manner and their resultant in 0arallel-concurrent 
with A having a different pre-exponential factor. (b) as in (a) but with the second A process replaced by C. In both 
cases a false value of D could emerge. 

current but proportionated(PCP), or in series and 
dependent (SD). Each of these combinations 
may yield apparent straight lines over limited 
regions in the transitional ranges and thus false 
values of activation energy Qs, stress exponent 
n, or grain size exponent m may be deduced. 
(iii) The various combinations mentioned in (ii) 
may arise in processes like creep because of the 
special nature of the activated units and their 
ability to be reactivated and to interact elastically; 
the temperature-dependence of such processes 
may thus have characteristics not found in 
normal chemical rate processes. A particular 
case of this kind concerns situations where a 
geometrical factor proportionates the strain 
increments among two (or more) kinds of unit 
(e.g. slip planes and grain-boundaries). In such 
cases a small proportion of a process with a high 
activation energy always emerges as dominant at 
high enough temperature, or one of low activa- 
tion energy at low enough temperatures. A 
similar situation exists with respect to grain size- 
dependence. 
(iv) It is shown that one popular method of 
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attempting to increase the range of stress studied, 
viz, using the Zener-Holloman parameter to 
give a temperature-compensated creep-rate, also 
has dangers. It may easily give a single, convincing 
but false, value of n when two values should be 
found. 
(v) The interpretation of the various plots should 
be made with specific models, interactions and 
geometries in mind. The range of models avail- 
able is wide and probably reasonably complete 
and acceptable. There is very much less inform- 
ation and confidence about the factors which 
determine the transitions between regimes of 
temperature-, stress- or grain size-dependence. 
(vi) Only combinations of pairs of processes have 
been considered systematically here. It is likely 
that greater numbers of processes are involved 
in practice; for example, a sequential-dependent 
pair of processes (grain-boundary sliding and 
accommodating slip) might combine in a 
parallel-concurrent manner with a process of 
slip within the grains. This could easily produce 
a diagram which gives no indication of such 
complexity of behaviour. 
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